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ABSTRACT 

This paper describes the development of a Battery Management System (BMS) State of 

Charge/Health (SOC/SOH) algorithm that was developed and proven for three different lithium 

ion based cell chemistries (nanophosphate, lithium manganese oxide, lithium iron phosphate).  In 

addition, a universal BMS architecture based on this algorithm was developed that can support 

other chemistries, capacities, and formats.  Algorithm performance was compared to actual data 

in the laboratory environment and also to data from a lithium iron phosphate hybrid electric 

vehicle pack that was integrated with an XM1124 hybrid electric HMMWV operating in a vehicle 

environment under realistic conditions.  The system demonstrated accuracy within 5% in a 

software upgradeable, low cost package. 

 

INTRODUCTION 
Lithium-based batteries promise excellent performance, 

although they require careful management to avoid 

personnel injury and equipment damage.  Consequently, 

there is extreme interest in developing an accurate Battery 

Management System (BMS) to take advantage of the 

positive attributes of lithium-based chemistries without 

sacrificing flexibility and safety.  However, the lack  

of adequate BMS standardization and inaccurate state 

estimation algorithms have hampered the widespread 

adoption of lithium chemistries in spite of their advantages.   

In this paper we describe our BMS and present results that 

show that we can provide State of Charge (SOC) estimation 

accuracy to better than 5%; that we can utilize existing life 

cycle data from battery manufacturers to estimate State of 

Health (SOH) and State of Life (SOL); and that we have a 

universal architecture that is adaptable to other chemistries, 

capacities, and formats.  The primary application that we 

describe is for Silent Watch, but the BMS is also adaptable 

for other Hybrid Electric Vehicle (HEV) applications. 

 

SYSTEM DESCRIPTION 
Figure 1 illustrates our concept for a BMS that provides 

health monitoring for a typical 24 VDC Silent Watch pack 

[1].  In most lithium-based battery pack applications, the 

pack is comprised of a number of series- and parallel-

connected cells to achieve the required voltage, current, and 

energy/power capacity.  As one example, a typical Silent 

Watch configuration could consist of eight submodules of 

six parallel-connected, prismatic, 3.3 V, 20 Ah cells (8S6P).  

In total, there are 48 cells in this configuration, the nominal 

pack voltage is 26.4 V, and the capacity is 120 Ah.  The 

parallel-connected cells are referred to as “super-cells” and 

require relatively little oversight compared to the series-

connected cells, which pose the most challenges because of 

the need for cell balancing.  The BMS monitors the voltage 

and temperature of each super-cell, and the series current of 

the overall pack via individual super-cell sense modules.  

Although the Silent Watch battery pack described above 

uses eight series-connected super-cells, this Universal BMS 

architecture is expandable to any number of super-cells,  
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Figure 1:   BMS architecture for a 24 VDC lithium-ion 

Silent Watch battery pack.  

 

extending support from Silent Watch to that of HEV power 

packs, for example.  The master Central Processing Unit 

(CPU) provides control and reporting functions and manages 

charge cycle and balancing for each individual super-cell, 

thereby ensuring safety and highly competitive performance.  

The CPU also uses SOC/SOL/SOH, power availability,  

and thermal monitoring algorithms to optimize and report  

on cell performance.  Finally, reporting to the vehicle 

communications interface or a higher level controller is 

provided via a bi-directional communication bus. 

 

Silent Watch Requirements 

This BMS aims to benefit a new breed of lithium-based 

battery packs currently being developed.  Reference [2] 

shows one example.  The energy for Silent Watch 

applications is currently provided by two series-connected 

lead acid batteries, such as the ArmaSafe 6T, 12 VDC, 

120 Ah battery.  Silent Watch energy needs range from an 

average power requirement of 1.5 kW for 2 to 6 hours to a 

short-term peak power requirement of almost 5 kW [1].  

There are two most obvious ways to achieve this goal using 

standard format lithium-ion cells that we know are of 

interest for Silent Watch applications.  These include the 

26650 cylindrical cells and the Prismatic cell.  Figure 2 

shows the configuration of 8 submodules of 52 parallel-

connected A123 26650, 3.3 V, 2.3 Ah cells (8S52P).  In 

total, there are 416 cells, the nominal pack voltage is 26.4 V, 

and the capacity is 120 Ah.  Figure 3 shows the configuration 

of 8 submodules of 6 parallel-connected A123 prismatic, 

3.3 V, 20 Ah cells (8S6P).  In total, there are 48 cells, the 

nominal pack voltage is 26.4 V, and the capacity is 120 Ah. 

Some important additional considerations in a battery pack 

design are the cost, power density, energy density, and 

volume of the packaging, which depend on the specific 

requirements of the application. 

 

Figure 2:  24 VDC lithium-ion pack based on 26650 type 

cylindrical cells (8S52P). 
 

 

Figure 3:  24 VDC lithium-ion pack based on prismatic 

lithium cells (8S6P). 
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In both cases, an effective method for configuring a BMS 

is to provide voltage, temperature, SOC, SOL, and SOH 

estimation; and cell balancing at the submodule level.  This 

method ensures a minimal number of sensing points and 

hardware size, while still achieving the main goal of 

providing accurate pack monitoring.  However, cell level 

electrical protection and temperature monitoring may still be 

needed at some level to guarantee maximum safety. 

 

Algorithm Details 

There are four primary elements to the BMS:  (1) accurate 

status reporting (SOC, SOH, SOL, power availability, and 

temperature); (2) cell charge control; (3) cell discharge 

control; and (4) cell balancing.  Creare’s Universal BMS 

will support multiple lithium-based as well as other battery 

chemistries by using model-based techniques to estimate 

SOC, SOH, and SOL.  Our model-based algorithms are data 

driven so that the code structure of the BMS and the core of 

the algorithms are independent of cell chemistry.  While the 

numeric parameters of the models used by the algorithms 

will depend explicitly on the chemistry via table-based 

model data storage, these parameters can be updated easily 

via software upgrades/downloads.  This approach makes it 

very simple to adapt a BMS to new chemistries that may not 

have been previously considered.  Therefore, we need to be 

able to create accurate, analytical models of the battery cells 

that will be used by the BMS.   

In the Enhanced Self Correcting (ESC) model, our battery 

cell is based on a simplified electrical circuit analog, where 

the characteristic equation for the loaded terminal voltage 

� 

y(t) is [3- 5]: 

       ).()()()())((OCV)( 21 thtftfRtitzty +++−=  (1) 

An equivalent-circuit schematic diagram for this equation is 

shown below in Figure 4.  It is comprised of what we refer 

to as static (R and OCV) and dynamic (f1, f2, and h) model 

components, which are separately found through static and 

dynamic modeling tests. The static modeling tests are the 

OCV tests as a function of SOC and temperature, and the 

dynamic tests are comprised of dynamic power profiles.  We 

obtained characterization data (open-circuit-voltage and 

other circuit parameters) for the LGC E1 [6], ATL LFPP [7], 

and A123 Systems 26650 cells [8] by modeling of the static 

and dynamic relationships for all three different cells. 

 

          

Figure 4:  Circuit equivalent model of the ESC cell model. 

Test Results 

To evaluate our BMS algorithms for the Silent Watch 

application, we adopt the profile of power versus time 

shown in Figure 5 [2].  This profile repeats every 

2,200 seconds, with air conditioning demands of 3.4 kW at 

25% duty cycle; communications equipment requiring 

0.6 kW at 6% duty cycle; and other navigation, movement 

tracking system, driver vision enhancement, displays, etc., 

requiring 0.6 kW continuous.  Present Silent Watch battery 

packs use 24 V, 120 Ah lead-acid batteries.  To approximate 

this capability using the cells explored in this project, battery 

packs are configured as: 

• LGC LMO E1 cell: 7S13P, 125 Ah, 27 V. 

• ATL LFP power cell: 8S6P, 144 Ah, 26 V. 

• A123 26650 LFP cell: 8S53P, 122 Ah, 26 V. 
 

In actual laboratory testing, we subjected the three cell 

types to the Silent Watch power profile at 25°C to evaluate 

the estimation algorithm accuracy.  The cells used for these 

tests were of the same manufacture as those used to create 

the cell model, but were physically different cells, thus 

having slightly different capacities, resistances, and so forth.  

More specifically, the Silent Watch tests on the physical 

cells started with fully charged cells.  Following charging, 

each cell was slowly discharged to 0% SOC based on cell 

terminal voltage.  Voltage, current, and net ampere hours 

discharged were recorded every second, and the net ampere 

hours discharged was used to construct a “true” SOC versus 

time trace for the purpose of evaluating the SOC estimation 

algorithms. For all three cell types, the time-domain terminal 

voltage and current are shown in Figure 6, and the SOC 

estimation during the test is shown in Figure 7.  The RMS 

SOC error using cell tests is shown in Table 1.  These results 

show that SOC estimates accurate within 5% are possible 

using these methods. 

 

 

Figure 5:  Silent Watch power profile. 
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Figure 6:  Data collected from three cells for Silent Watch profile repeated three times. 

 

 

 
 

   Figure 7:  SOC estimation results for cell test data, Silent Watch profile. 
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Table 1:  RMS SOC estimation errors 

for Silent Watch profile, real data. 

A123 26650 cell 2.9% 

LGC E1 cell 2.2% 

ATL LFP power cell 2.2% 

 

 

Figure 7 also shows SOC estimates based on Coulomb 

counting as a baseline.  This reference is valuable to show 

how the Sigma Point Kalman Filter (SPKF) algorithms adapt 

to adjust to cell characteristics that are unexpected.  Both the 

SPKF and the Coulomb counting methods initialize their 

SOC estimates using the first voltage measurement, 

assuming it is a stable open-circuit-voltage value.  From that 

point, the Coulomb counting method accumulates net 

ampere-hours depleted from the cell, and calculates SOC as 

(initial SOC) – (net ampere-hours depleted)/(nominal cell 

capacity).  Coulomb counting cannot recover from errors in 

initial SOC, measurement errors in net ampere-hours 

depleted, or in assumed nominal cell capacity.  However, the 

SPKF methods can.  The SPKF algorithm automatically 

balances information from the current sensor and the voltage 

sensor.  However, when the sensed voltage contains very 

little information, it must rely on the current sensor for most 

of its estimation updates.  Near very high SOC and very low 

SOC, the sensed voltage contains more information, and the 

SPKF uses this information to adapt its estimate more 

aggressively and converge to the correct value. 

 

SOC Estimation Using Operational Data 

In addition to evaluation for the Silent Watch application, 

we also evaluated performance for an advanced HEV 

lithium-ion pack produced by A123 Systems for the 

XM1124 HMMWV [9, 10, 11].  The battery pack was 

configured as 27 series-connected modules, each module 

being a group of 4S6P A123 LFP 26650 cells.  The overall 

rating of the pack was 350V and 13.8Ah.  The pack was first 

bench tested under various conditions, then integrated into 

an XM1124 Series Hybrid HMMWV where it underwent a 

group of vehicle performance tests. 

The first data set (Figure 8) is a laboratory-controlled 

simulated drive cycle (bench test) and the second (Figure 9) 

is a road test driving up Mount Sano in Huntsville, AL 

(vehicle test).  In the bench test, SOC estimates are 

compared between two developmental SOC estimators 

provided with the pack (Pack SOC, Volt SOC), a simple 

coulomb counter, and the SPKF SOC estimator developed 

during this program.  In the vehicle test, a temperature-

compensated coulomb counter from the vehicle SOC 

estimator (ICBM SOC) is also compared to the others.   

The SPKF SOC estimates were created using the identical 

code base as was used to evaluate the Silent Watch data sets 

in the second progress report.  All models and tuning 

parameters were the same.   

For the laboratory test shown plotted in Figure 8, we 

initialized a coulomb counter and the SPKF to the same 

initial SOC estimate.  All estimates, except for the voltage-

based “Volt SOC” estimate, agree quite well.  The “Pack 

SOC” and SPKF SOC estimate closely agree and track 

together within a few percent.  Upon closer review, it is 

observed that the Coulomb Counter also tracks virtually 

identically with the SPKF SOC.  The SOC estimates shown 

in the vehicle test of Figure 9 also show that the SPKF 

estimate tracks the Coulomb counter well, whereas the 

others deviate by 20 to 40% from that value. 

 

State of Health Estimation 

The definitions of SOH and SOL include a discrete 

indication of whether the cell is healthy or not (SOH), and a 

continual estimation of remaining useful life as the battery 

ages (SOL).  Both will be determined by estimating the real-

time values of certain key parameters (e.g., capacity fade 

and internal resistance) in the ESC model, and comparing 

them to life cycle data provided by the cell manufacturer.  

The approach will use system identification techniques 

(which can be implemented with Kalman Filters as well) to 

estimate key parameters of the cell as it ages.  These 

parameter values are updated as the cell ages, and therefore 

serve as battery cell health indicators.  We focus on capacity 

fade and internal resistance to determine SOL and SOH.   

SOL estimation is based on historical cycle-life data of the 

particular cell being used.  We have obtained preliminary 

cycle life data of the 18650 1100 mAh, and 26650 

2200 mAh Lithium Iron Phosphate (LiFePO4) cells from 

Tenergy Battery Corp. (Manufacturer items #30028 and 

#30030, respectively).  The following equations can be used 

to obtain the capacity left as a function of cycle number 

assuming the application will use these cells with a 

discharge rate of 1°C. 

   1.112314698.000055432.0
2

18650 +−−= xxleftCapacity  (2) 

   9.217203513.00026587.0 2

26650 +−−= xxleftCapacity  (3) 

where x is the number of cycles already exercised (which 

need to be counted). Note that data were obtained for the 

first 300 cycles, and the equations above are extrapolating 

beyond the 300 cycles of data obtained.  Note also that the 

estimated capacity fade computed in this way can be 

compared to that produced by the model-based approach, 

and used as a computational sanity check benchmark for the 

adaptive model, to remain within physically meaningful 

bounds. 
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Figure 8:  Bench test:  laboratory controlled simulated drive cycle. 

 

 

 
 

 
 

Figure 9:  Vehicle test:  road test up Mount Sano in Huntsville, AL. 
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Figure 10 shows how the data might be used to estimate 

SOL of a 18650 cell.  The plot shows the analytical life 

cycle curve (blue) superimposed on actual cycle life data 

(red).  The capacity of the new cell is 1125 mA-hr, and the 

capacity fades to 80% of this value (industry accepted 

measure of end of life) at roughly 500 charge cycles.  As the 

cell ages and the capacity fades, the number of estimated 

remaining charge cycles is continually updated.  The plot 

shows that the present capacity is roughly 1030 mA-hr, and 

this implies that there are roughly 200 charge cycles 

remaining. 

 

UPCOMING PLANS 
Our overall objective is to develop a BMS that forms a 

universal architecture that supports a wide range of battery 

chemistries, capacities, and manufacturer products.   

During this work we demonstrated the feasibility of our 

standard BMS concept, and in subsequent work our  

intent is to complete development of a series of prototypes 

and demonstrate performance in a typical Silent Watch 

application. 

 

 

 

Figure 10:  Comparison of equation 3 result with real 18650 

Tenergy cell cycle life data. 
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